Table 3. Coordination number CN, values of the local error parameter E_p , the local average dihedral angles $\theta_{m,p}$ and the minimum and maximum dihedral angle of the tetrahedra in the five distinct coordination polyhedra

	CN	Ep	$\theta_{m,p}$ (°)	$\theta_{\min}(^{\circ})$	θ_{\max} (°)
Coi	12	0.0623	70.571	59.288	79.972
M 1	12	0.0596	70.567	60.319	77.132
Nb1	15	0.0649	70.515	54.748	79.972
Nb2	16	0.0634	70.536	59.288	77.132
Nb3	14	0.0663	70.486	54.748	79.972

Table 4. Values for the error parameter E and the average dihedral angle θ_m of selected Frank-Kasper phases

Phase	Туре	$E \times 10^{-2}$	θ_m (°)
Cr ₃ Si ^a	A15	0.0631	70.435
Al ₃ Zr ₄ ^b	Z	0.0612	70.500
$Fe_7 W_6^c$	μ	0.0658	70.540
Co _{6.30} Nb _{6.70}	μ	0.0633	70.540
Cu ₂ Mg ^d	C15	0.0621	70.588

Calculations are based on crystal data as reported by (a) Boren (1933); (b) Wilson, Thomas & Spooner (1960); (c) Arnfelt & Westgren (1935), and (d) Laves & Witte (1935).

The quality of the crystal was checked by precession photographs (Mo $K\alpha$). The structure of the observe-reverse twinned crystal was refined with the program *SHELXL93* (Sheldrick, 1993). The geometrical analyses of the tetrahedral close (german: *dicht*) packed structures were performed with the program *TDP* (Wagner, 1994). The error parameters *E* were calculated using the algorithm of Brandon, Chieh, Pearson & Riley (1975).

Data collection: CAD-4 software. Cell refinement: CAD-4 software. Data reduction: *SDP* (Frenz, 1978). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *SCHAKAL* (Keller, 1992).

Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is acknowledged.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1106). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Arnfelt, H. & Westgren, A. (1935). Jernkontorets Ann. 119, 185-196. Boren, B. (1933). Ark. Kem. Mineral. Geol. 11A, 1-28.

- Brandon, J. K., Chieh, P. C., Pearson, W. B. & Riley, P. W. (1975). Acta Cryst. A31, 236-240.
- Forsyth, J. B. & D'Alte da Veiga, L. M. (1962). Acta Cryst. 15, 543-546.
- Frank, F. C. & Kasper, J. S. (1958). Acta Cryst. 11, 184-190.
- Frank, F. C. & Kasper, J. S. (1959). Acta Cryst. 12, 483-499.
- Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, p. 564. Delft Univ. Press.
- Keller, E. (1992). SCHAKAL92. A Computer Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
- Laves, F. & Witte, H. (1935). Metallwirtsch. Metallwiss. Metalltech. 14, 645-649.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Shoemaker, D. P. & Shoemaker, C. B. (1986). Acta Cryst. B42, 3-11.

- Shurin, A. K., Kripyakevitch, P. I. & Gladysheskii, E. I. (1965). Sov. Phys. - Crystallogr. 10, 336-337.
- Wagner, V. (1994). TDP. A Program for Analysing Tetrahedrally Close-Packed Structures. Dissertation, Univ. of Dortmund, Germany.
- Wilson, C. G., Thomas, D. K. & Spooner, F. J. (1960). Acta Cryst. 13, 56-57.

Acta Cryst. (1995). C51, 1243-1246

A Novel Semiconducting Perovskite-Related Phase: Sr₅Nb₅O₁₇

Helmut W. Schmalle, Tim Williams† and Armin Reller‡

Institute for Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

FRANK LICHTENBERG,§ DANIEL WIDMER AND J. GEORG BEDNORZ

IBM Research Division, Zürich Research Laboratory, CH-8803 Rüschlikon, Switzerland

(Received 30 August 1994; accepted 19 January 1995)

Abstract

The structure of strontium niobium oxide, Sr₅Nb₅O₁₇, prepared by the floating-zone melting technique, has been determined by single-crystal X-ray analysis. The structure contains distorted perovskite-type slabs parallel to (100) formed from five NbO₆ octahedra and Sr atoms. The Nb-O distances range from 1.89(2) to 2.10(2) Å for Nb1, from 1.809(5) to 2.282(6) Å for Nb2, and from 1.851 (6) to 2.167 (6) Å for Nb3. The NbO₆ conformations are (4+1+1) distorted. Sr2 and Sr3 are coordinated by 12 O atoms with Sr-O distances in the range 2.64 (1) to 3.04(1) Å for Sr2 and 2.50(1)to 3.06(1) Å for Sr3. Sr1, placed near the boundary of the slab, is irregularly coordinated by five O atoms in the same slab and two O atoms in the neighbouring slab [Sr-O 2.46(1) to 2.915(6)Å] and by a further three O atoms at long coordination distances [3.345 (8) to 3.544 (9) Å]. The title compound is isotypic with La₅Ti₅O₁₇ and both structures belong to the homologous

† Present address: JASCO International Co. Ltd, 4-21 Sennin-cho 2-chome, Hachioji City, Tokyo 193, Japan.

[‡] Present address: Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany.

[§] Present address: VARTA Batterie AG, R & D Centre, Gundelhardtstrasse 72, D-65779 Kelkheim, Germany.

series $A_{n+1}B_{n+1}O_{3n+5}$ with n = 4, being diamagnetic (B = Nb) or paramagnetic (B = Ti) electrically conducting compounds.

Comment

The systems $SrNbO_x$, $CaNbO_x$ (3.40 < x < 3.50) and LaTiO_x (3.00 < x < 3.50) have been studied recently because of their interesting physical and structural properties, which are tunable by changing only the oxygen content, x (Lichtenberg, Widmer, Bednorz, Williams & Reller, 1991a; Lichtenberg, Williams, Reller, Widmer & Bednorz, 1991b; Williams, Schmalle, Reller, Lichtenberg, Widmer & Bednorz, 1991; Schmalle, Williams, Reller, Linden & Bednorz, 1993; Williams, Lichtenberg, Widmer, Bednorz & Reller, 1993). These perovskiterelated compounds are members of the homologous series $A_{n+1}B_{n+1}O_{3n+5}$ (A = Sr, Ca, La and B = Nb, Ti), where n is merely determined by the oxygen content x(Fig. 1). The structure type for x = 3.40 is known from the electrically non-conducting La-Ca-Ti-O and Na-Ca-Nb-O systems in which Ti and Nb are in their highest oxidation state (Ti⁴⁺, $3d^0$ and Nb⁵⁺, $4d^0$) (Portier, Fayard, Carpy & Galy, 1974; Nanot, Queyroux & Gilles, 1973).

This work describes the structure of $Sr_5Nb_5O_{17}$ (x = 3.40, n = 4), which is a diamagnetic electrically conducting compound (Nb^{4.8+}, 4d^{0.2}). It was prepared by the floating-zone melting technique under an Ar atmosphere. The true stoichiometry was determined by thermogravimetric analysis to be $Sr_5Nb_5O_{17.1}$ (x = 3.42). It was found that for 3.40 < x < 3.42 the structure type (n = 4) remains unchanged (Lichtenberg *et al.*, 1991b).

The conditions for systematic absences, taken from Weissenberg and precession photographs, led to the possible space groups Pnnm (No. 58) and Pnn2 (No. 34). Statistics based on E values showed hypercentricity of the data (e.g. $E^6 = 37.228$, compared to theoretical values for non-centrosymmetric, centrosymmetric and hypercentric data of 6.00, 15.00 and 37.50, respectively) and the E^2 values of the eight parity groups are far from unity (by definition $\langle E^2 \rangle = 1.0$). Reflection groups with h + k + l = 2n have higher values than those with h + k + l = 2n + 1, influenced by superposition effects of heavy atoms along the *a* direction. Average values are eee = 2.443, eoo = 2.909, ooe = 0.675, oeo = 0.497; oee, eoe, eeo and ooo (e = even, o = odd h, k, l) showed values between 0.303 and 0.364; $\langle E^2 \rangle$ for all reflections was calculated to be 0.971.

The structure was solved in both space groups using Patterson interpretation routines of SHELXS86 (Sheldrick, 1985) and subsequent difference Fourier calculations and refinement were carried out using SHELX76 (Sheldrick, 1976). A comparison of final R (wR) values [0.0461 (0.0601) for Pnnm and 0.0387 (0.0449) for Pnn2] favoured the non-centrosymmetric space group Pnn2. The absolute-structure parameter χ (Flack, 1983; Bernardinelli & Flack, 1987) refined to -0.025 (32) using the γ -test version of SHELXL92 (Sheldrick, 1992), providing evidence that no inversion twinning was present in the crystal studied.

The atomic numbering scheme and perovskite-block separation are shown in Fig. 2. The NbO₆ octahedra have average apical distances of 1.851 and 2.184 Å. [The apical O atoms are defined by the shortest and longest Nb—O distances in *trans* positions: for Nb1

Fig. 1. Projection along the c axis of the idealized structure of the n = 3, 4 and ∞ members of the homologous series $A_{n+1}B_{n+1}O_{3n+5}$. The cations La, Sr and Ca are represented by circles. Light and heavy ruling of the BO_6 octahedra and filled and open circles indicate a height difference along the projection direction.

Fig. 2. A [001] projection of the crystal structure of $Sr_5Nb_5O_{17}$. Circled numbers 1, 2, and 3 refer to the refined Sr-atom positions, other numbers correspond to the refined O-atom positions shown in Table 1.

V

the apical O atoms are O3 and O3ⁱⁱ, for Nb2 they are O4^v and O6ⁱⁱⁱ, and for Nb3 they are O1^{iv} and O6ⁱⁱⁱ (see also Table 2).] The mean value of the 12 equatorial Nb-O distances for the three independent octahedra is 2.005 Å. Like the NbO₆ octahedra in Sr₂Nb₂O₇ (Ishizawa, Marumo, Kawamura & Kimura, 1975) and the TiO_6 octahedra in the structure of La₂Ti₂O₇ (Gasperin, 1975; Schmalle et al., 1993), the NbO₆ conformations of the title compound are also (4+1+1) distorted. The NbO₆ octahedral blocks are shifted by a c/2 crystallographic shear, a term first used by Wadsley (1964) and reviewed by Anderson & Hyde (1989) (see the ac projection of the structure deposited with the supplementary material).

The Sr—O coordination distances vary considerably; the coordination spheres are shown in Fig. 3. The interplanar Sr1 cation is coordinated by seven O atoms at distances between 2.46 (1) and 2.915 (6) Å, but three further O atoms, O6, O6ⁱⁱ, and O8^{iv}, at distances between 3.35(1) and 3.54(1)Å (Table 2), are also indicated in Fig. 3. The intraplanar Sr2 and Sr3 cations have cubo-octahedral coordination spheres in the form of cubes of eight O atoms capped by the four O atoms O3, O3^{ix}, O9 and O9^v for Sr2 and the four O atoms O3, O8, O9 and O9^x for Sr3, with Sr-O distances up to 3.04(1) Å for Sr2 and 3.06(1) Å for Sr3. The coordination number is obviously not given correctly by the sum of the covalent radii of Sr and O (2.81 Å). If this distance were taken as a borderline criterion, Sr1 and Sr2 would be only coordinated by six and Sr3 by seven O atoms, which is obviously not the case for this structure.

Fig. 3. Ball-and-stick perspective SCHAKAL (Keller, 1986) plot of the three Sr-O coordination spheres of Sr₅Nb₅O₁₇. The O-atom numbering corresponds to that in Table 2.

Experimental

Sr₅Nb₅O₁₇ was prepared by the floating-zone melting technique under an Ar atmosphere.

Crystal data

Sr ₅ Nb ₅ O ₁₇	Mo $K\alpha$ radiation
$M_r = 1174.62$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 25
Pnn2	reflections
a = 32.456(5) Å	$\theta = 5.6 - 12.0^{\circ}$
b = 5.674(2) Å	$\mu = 21.11 \text{ mm}^{-1}$
c = 3.995 (2) Å	T = 296 K

V = 735.7 (6) Å ³	
Z = 2	
$D_x = 5.302 \text{ Mg m}^{-3}$	

Data collection

Enraf–Nonius CAD-4
diffractometer
ω –2 θ scans
Absorption correction:
analytical (based on six
crystal faces)
$T_{\min} = 0.0717, T_{\max} =$
0.4744
2674 measured reflections

2118 independent reflections

Refinement

-	
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.116$
R = 0.0387	$\Delta \rho_{\rm max} = 2.19 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0449	$\Delta ho_{ m min} = -3.09 \ { m e} \ { m \AA}^{-3}$
S = 3.396	Atomic scattering factors
1785 reflections	from International Tables
30 parameters	for X-ray Crystallography
$w = 8.826/[\sigma^2(F_o)]$	(1974, Vol. IV)
$+ 0.000010F_{o}^{2}$]	

Ledge-shaped

 $[I > 3\sigma(I)]$

 $R_{\rm int} = 0.0581$

 $\theta_{\rm max} = 30.0^{\circ}$ $h = -45 \rightarrow 45$

 $k = 0 \rightarrow 8$

 $l = -5 \rightarrow 0$

3 standard reflections

frequency: 180 min

intensity decay: <1%

Black

 $0.387 \times 0.135 \times 0.035$ mm

1796 observed reflections

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

U_{iso} for U atoms, $U_{eq} = (1/3) \Delta_i \Delta_j U_{ij} a_i^* a_j^* a_{i.a_j}$ for ND and

x	y z	U_{ea}/U_{iso}
Nb1 1/2 1/2	0.5	0.0035 (2)
Nb2 0.32270 (2) 0.5	339 (1) 0.505	1 (12) 0.0044 (1)
Nb3 0.40928 (2) 0.0	053 (1) 0.512	0 (12) 0.0031 (1)
Sr1 0.21443 (2) 0.5	628 (1) 0.513	0 (12) 0.0136 (2)
Sr2 1/2 0	-0.001	0 (14) 0.0068 (2)
Sr3 0.41131 (3) 0.4	996 (1) 0.002	7 (11) 0.0072 (2)
O1 0.5376 (2) 0.2	258 (8) 0.489	0 (37) 0.009 (1)
O2 0.4518 (2) 0.2	.693 (8) 0.526	7 (33) 0.006 (1)
O3 1/2 1/2	0.026	4 (41) 0.015 (2)
O4 0.2089 (2) 0.2	966 (9) 0.015	3 (39) 0.009 (1)
O5 0.1207 (2) 0.2	070 (8) 0.017	1 (37) 0.006 (1)
O6 0.1328 (2) 0.7	236 (9) -0.030	0 (28) 0.010 (1)
O7 0.2794 (2) 0.3	177 (9) 0.507	3 (40) 0.007 (1)
O8 0.3311 (2) 0.5	054 (10) 0.019	6 (38) 0.017 (2)
O9 0.4169 (2) -0.0	0108 (10) 0.013	8 (38) 0.015 (1)

Table 2. Selected geometric parameters (Å, °)

	0	-	. , ,
Nb103	1.892 (16)	Sr2O1 ^{viii}	2.699 (13)
Nb1-01	1.978 (5)	Sr209	2.699 (7)
Nb1—O1 ⁱ	1.978 (5)	Sr2—O9 ^{iv}	2.699 (7)
Nb1-02	2.042 (5)	Sr1-04 ^v	2.821 (6)
Nb1—O2 ⁱ	2.042 (5)	Sr1–O8 ^v	2.915 (6)
Nb1—O3 ⁱⁱ	2.103 (16)	Sr1O6 ⁱⁱ	3.345 (8)
Nb3—O6 ⁱⁱⁱ	1.851 (6)	Sr1—O8 ⁱⁱⁱ	3.492 (6)
Nb3—O5 ⁱⁱⁱ	1.952 (5)	Sr106	3.544 (9)
Nb309	2.007 (16)	Sr2-03	2.839 (1)
Nb3—O9 ⁱⁱ	2.022 (16)	Sr2O3 ^{ix}	2.839 (1)
Nb3—O2	2.039 (5)	Sr2—O2 ^{vii}	2.888 (10)
Nb3—O1 ^{iv}	2.167 (6)	Sr2O2 ^{viii}	2.888 (10)
Nb2—O4 ^v	1.809 (5)	Sr2	3.037 (11)
Nb207	1.866 (5)	Sr2O2 ^{iv}	3.037 (11)
Nb2—O8	1.966 (16)	Sr3—O5 ^{vi}	2.495 (13)
Nb2O8 ⁱⁱ	2.080 (16)	Sr3—O5 ^v	2.586 (13)
Nb2—O5 ^v	2.084 (5)	Sr308	2.603 (7)
Nb2—O6 ⁱⁱⁱ	2.282 (6)	Sr3—O2 ^{vii}	2.656 (11)
Sr1-07 ^v	2.456 (14)	Sr309 ^x	2.784 (6)
Sr107 ^{vi}	2.493 (14)	Sr3	2.797 (11)
Sr1-04	2.504 (13)	Sr3—O6 ⁱⁱⁱ	2.826 (9)
Sr1—O4 ⁱⁱ	2.518 (13)	Sr303	2.880 (1)

Sr107	2.525 (6)	Sr309	2.902 (6)
Sr2-01	2.639 (12)	Sr301 ¹	2.992 (11)
Sr2-01 ^{iv}	2.639 (12)	Sr306 ^{xi}	3.005 (10)
Sr201 ^{vii}	2.699 (13)	Sr3O1 ^{xii}	3.064 (11)
O3-Nb1-O1	88.7 (4)	07—Nb2—O6 ⁱⁱⁱ	88.3 (2)
03-Nb1-01 ⁱ	88.7 (4)	O8—Nb2—O8"	161.9 (4)
O3-Nb1-O2	93.0 (4)	O8-Nb2-O5	86.5 (4)
O3-Nb1-O2 ⁱ	93.0 (4)	O8—Nb2—O6 ⁱⁱⁱ	77.7 (4)
O3Nb1O3 ⁱⁱ	180.0	O8 ⁱⁱ Nb2O5 ^v	84.1 (5)
01Nb1O1 ⁱ	177.8 (5)	O8 ⁱⁱ —Nb2—O6 ⁱⁱⁱ	85.3 (3)
O1-Nb1-O2	88.2 (2)	O5 ^v —Nb2—O6 ⁱⁱⁱ	78.8 (2)
O1-Nb1-O2 ⁱ	91.9 (2)	Об ^ш —Nb3—О5 ^ш	102.3 (2)
O1—Nb1—O3 ⁱⁱ	91.3 (4)	O6 ⁱⁱⁱ —Nb3—O9	91.8 (4)
O1 ⁱ Nb1O2	91.9 (2)	06 ⁱⁱⁱ —Nb3—O9 ⁱⁱ	102.1 (4)
Ol ⁱ —Nb1—O2 ⁱ	88.2 (2)	O6 ⁱⁱⁱ —Nb3—O2	90.6 (2)
01 ^і —Nb1—O3 ^{іі}	91.3 (4)	06 ⁱⁱⁱ Nb3O1 ^{iv}	170.9 (5)
O2—Nb1—O2 ⁱ	174.0 (7)	O5 ⁱⁱⁱ Nb3O9	91.8 (5)
O2—Nb1—O3 ⁱⁱ	87.0 (4)	O5 ⁱⁱⁱ —Nb3—O9 ⁱⁱ	90.6 (5)
O2 ⁱ —Nb1—O3 ⁱⁱ	87.0 (4)	O5 ⁱⁱⁱ —Nb3—O2	167.0 (2)
04 ^v Nb207	96.6 (2)	O5 ⁱⁱⁱ —Nb3—O1 ⁱ [™]	82.7 (2)
O4 ^v —Nb2—O8	99.7 (6)	09Nb309 ⁱⁱ	165.0 (4)
O4 ^v —Nb2—O8 ⁱⁱ	96.7 (6)	O9-Nb3O2	88.8 (4)
O4 ^v —Nb2—O5 ^v	96.4 (2)	09	80.4 (4)
04 ^v Nb2O6 ⁱⁱⁱ	174.7 (3)	O9 ⁱⁱ —Nb3—O2	85.5 (4)
07-Nb2-08	93.2 (5)	O9 ⁿ —Nb3—O1 [™]	85.3 (4)
07—Nb2—O8 ⁱⁱ	92.5 (5)	O2-Nb3O1 ^{iv}	84.7 (2)
O7—Nb2—O5 ^v	166.9 (2)		

Symmetry codes: (i) 1-x, 1-y, z; (ii) x, y, 1+z; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}+z$; (iv) 1-x, -y, z; (v) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$; (vi) $\frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (vii) x, y, z-1; (viii) 1-x, -y, z-1; (ix) x, y-1, z; (x) x, 1+y, z; (xi) $\frac{1}{2}-x, y-\frac{1}{2}, z-\frac{1}{2}$; (xii) 1-x, 1-y, z-1.

Data collection, cell refinement and crystal-face indexing: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: MolEN (Fair, 1990). Structure solution: SHELXS86 (Sheldrick, 1985). Structure refinement and absorption correction: SHELX76 (Sheldrick, 1976). 12 reflections affected by extinction were excluded from the final cycles of least-squares refinement. Anisotropic displacement factors were refined only for Sr and Nb atoms. Molecular graphics: SCHAKAL (Keller, 1986). Geometry calculations: ORFFE3 (Busing et al., 1971)

Gratitude is expressed to Professor H. R. Oswald, the University of Zürich, for standing support for this work, and the Swiss National Foundation of Science for financial support under project NF 2.772-0.87. The authors also thank the coeditor, Dr I. David Brown, for helpful suggestions and for improving the style of the paper.

Lists of structure factors, anisotropic displacement parameters and complete geometry, and a plot of the projection of the structure on the *ac* plane, have been deposited with the IUCr (Reference: BR1096). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Anderson, S. & Hyde, B. G. (1989). In Inorganic Crystal Structures. New York: Wiley.
- Bernardinelli, G. & Flack, H. D. (1987). Acta Cryst. A43, 75-78.
- Busing, W. R., Martin, K. O., Levy, H. A., Brown, G. M., Johnson, C. K. & Thiessen, W. A. (1971). ORFFE3. A Fortran Function and Error Program. Report ORNL-TM-306 (revised). Oak Ridge National Laboratory, Tennessee, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
 - Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- ¹⁾ Gasperin, M. (1975). Acta Cryst. B**31**, 2129–2130.
 - Ishizawa, N., Marumo, F., Kawamura, T. & Kimura, M. (1975). Acta Cryst. B31, 1912–1915.
 - Keller, E. (1986). SCHAKAL86. Fortran Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
 - Lichtenberg, F., Widmer, D., Bednorz, J. G., Williams, T. & Reller, A. (1991a). Z. Phys. B82, 211-216.
 - Lichtenberg, F., Williams, T., Reller, A., Widmer, D. & Bednorz, J. G. (1991b). Z. Phys. B84, 369–374.
 - Nanot, M., Queyroux, F. & Gilles, J. C. (1973). C. R. Acad. Sci. Ser. C, 277, 505–507.
 - Portier, R., Fayard, M., Carpy, A. & Galy, J. (1974). Mater. Res. Bull. 9, 371-378.
 - Schmalle, H. W., Williams, T., Reller, A., Linden, A. & Bednorz, J. G. (1993). Acta Cryst. B49, 235-244.
 - Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
 - Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.
 - Sheldrick, G. M. (1992). SHELXL92. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
 - Wadsley, A. D. (1964). Non-Stoichoimetric Compounds, edited by L. Mandelcorn, pp. 98-209. New York: Academic Press.
 - Williams, T., Lichtenberg, F., Widmer, D., Bednorz, G. & Reller, A. (1993). J. Solid State Chem. 103, 375–386.
 - Williams, T., Schmalle, H., Reller, A., Lichtenberg, F., Widmer, D. & Bednorz, G. (1991). J. Solid State Chem. 93, 534–548.

Acta Cryst. (1995). C51, 1246–1249

A New Type of Mixed Anionic Framework in the Structure of $K_3[Al_4F_9(PO_4)_2]$

WERNER MASSA

Fachbereich Chemie der Philipps-Universität and Wiss. Zentrum f. Materialwissenschaften, Hans-Meerwein-Strasse, D-35043 Marburg, Germany

OLGA V. YAKUBOVICH AND OKSANA V. KARIMOVA

Department of Crystal Chemistry, Geological Faculty, Moscow State University, Leninskije Gory, 119899 Moscow, Russia

LYUDMILA N. DEM'YANETS

Institute of Crystallography, Academy of Sciences of Russia, Leninskji Prospect 59, 117333 Moscow, Russia

(Received 8 November 1994; accepted 11 January 1995)

Abstract

X-ray analysis of a hydrothermally synthesized potassium aluminium fluoride orthophosphate, $K_3[Al_4F_9-(PO_4)_2]$, showed that this compound has a new type of